Poynting-Stokes tensor and radiative transfer in discrete random media: the microphysical paradigm.
نویسنده
چکیده
This paper solves the long-standing problem of establishing the fundamental physical link between the radiative transfer theory and macroscopic electromagnetics in the case of elastic scattering by a sparse discrete random medium. The radiative transfer equation (RTE) is derived directly from the macroscopic Maxwell equations by computing theoretically the appropriately defined so-called Poynting-Stokes tensor carrying information on both the direction, magnitude, and polarization characteristics of local electromagnetic energy flow. Our derivation from first principles shows that to compute the local Poynting vector averaged over a sufficiently long period of time, one can solve the RTE for the direction-dependent specific intensity column vector and then integrate the direction-weighted specific intensity over all directions. Furthermore, we demonstrate that the specific intensity (or specific intensity column vector) can be measured with a well-collimated radiometer (photopolarimeter), which provides the ultimate physical justification for the use of such instruments in radiation-budget and particle-characterization applications. However, the specific intensity cannot be interpreted in phenomenological terms as signifying the amount of electromagnetic energy transported in a given direction per unit area normal to this direction per unit time per unit solid angle. Also, in the case of a densely packed scattering medium the relation of the measurement with a well-collimated radiometer to the time-averaged local Poynting vector remains uncertain, and the theoretical modeling of this measurement is likely to require a much more complicated approach than solving an RTE.
منابع مشابه
تبادل تابش گرمایی بین دو تیغه مغناطودیالکتریک متا ماده با ضخامت متناهی در شرایط غیرتعادلی
In this paper, we consider a system including two maghnetodielectric slabs with different temperature that are placed in vacuum at zero temperature and very short separation distances from each other. Based on the canonical quantization of the electromagnetic field in the presence of dissipative media, we investigate the radiative heat transfer arising from thermal and quantum fluctuations in o...
متن کاملHeat Transfer Characteristics of Porous Radiant Burners Using Discrete-Ordinate Method (S2-Approximation)
This paper describes a theoretical study to investigate the heat transfer characteristics of porous radiant burners. A one dimensional model is used to solve the governing equations for porous medium and gas flow before the premixed flame to the exhaust gas. Combustion in the porous medium is modeled as a spatially dependent heat generation zone. The homogeneous porous media, in addition to its...
متن کاملRadiative transfer of ultrasound
A radiative transfer equation is used to model the diffuse multiple scattering of ultrasound in a medium containing discrete random scatterers. An assumption of uncorrelated phases allows one to write an equation of energy balance for the diffuse intensity. This ultrasonic radiative transfer equation contains single-scattering and propagation parameters that are calculated using the elastic wav...
متن کاملANALYSIS OF COMBINED CONDUCTION AND RADIATION HEAT TRANSFER IN A RECTANGULAR FURNACE INCLUDING TWO FLAMES
Abstract: The present study deals the theoretical modeling aspects of coupled conductive and radiative heat transfer in the presence of absorbing, emitting and scattering gray medium within two-dimensional square furnace including two flames. The gray radiative medium is bounded by isothermal walls which are considered to be opaque, diffuse and gray. The well known discrete ordinate method (DOM...
متن کاملVector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics.
The concepts of statistical electromagnetics are used to derive the general radiative transfer equation (RTE) that describes multiple scattering of polarized light by sparse discrete random media consisting of arbitrarily shaped and arbitrarily oriented particles. The derivation starts with the volume integral and Lippmann-Schwinger equations for the electric field scattered by a fixed N-partic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 18 19 شماره
صفحات -
تاریخ انتشار 2010